

ISSN: 2476-8642 (Print)
ISSN: 2536-6149 (Online)

www.annalsofhealthresearch.com
African Index Medicus, Crossref, African Journals
Online, Scopus, C.O.P.E &
Directory of Open Access Journals

(The Journal of the Medical and Dental Consultants' Association of Nigeria, OOUTH, Sagamu, Nigeria)

Volume 11 | **No. 1** | **Jan - Mar., 2025**

IN THIS ISSUE

- Childhood Cataract
- Antibiotic Stewardahip
- Anxiety and Depression Among Undergraduates
- Quality of Life and Mental Illness in the Elderly
- Adiposity and Pro-inflammatory Indices in Hypertension
- Sexual. Assault Documentation
- Surgical and Assisted Vaginal Deliveries
- Acceptability of Rotavirus Vaccine
- Paediatric Thyroid Disorders
- TENIS Syndrome
- Behavioural Modification in Hypertension
- Ocular Prosthetics for Traumatic Enucleation

PUBLISHED BY THE MEDICAL AND DENTAL CONSULTANTS ASSOCIATION OF NIGERIA, OOUTH, SAGAMU, NIGERIA.

www.mdcan.oouth.org.ng

Annals of Health Research

(The Journal of the Medical and Dental Consultants Association of Nigeria, OOUTH, Sagamu, Nigeria)
CC BY-NC
Volume 11, Issue 1: 7-19

March 2025 doi:10.30442/ahr.1101-02-266

ORIGINAL RESEARCH

Impact of Antimicrobial Stewardship Intervention on Antibiotic Prescribing Practices in the Paediatric Unit of a Tertiary Hospital:

Using Global-Point Prevalence Survey as a Tool
Ola-Bello Olafoyekemi I*1, Osuagwu Chioma S², Versporten Ann³, Ines
Pauwels³, Goossens Herman³, Akintan Patricia E⁴, Fajolu Iretiola B⁴,
Oshun Philip O², Roberts Alero A⁵, Temiye Edamisan O⁴,
Ajudua Sharon C⁴, Oduyebo Oyinlola O²

¹Department of Microbial Pathology, University of Medical Sciences, Ondo, Ondo State

*Correspondence: Dr OI Ola-Bello, Department of Microbial Pathology, University of Medical Sciences, Ondo, Ondo State. E-mail: oladbello@yahoo.com; ORCID - https://orcid.org/0000-0002-8146-8013.

Citation: Ola-Bello OI, Osuagwu CS, Versporten A, Ines P, Goossens H, Akintan PE, *et al.* Impact of Antimicrobial Stewardship Intervention on Antibiotic Prescribing Practices in the Paediatric Unit of a Tertiary Hospital: Using Global-Point Prevalence Survey as a Tool. Ann Health Res 2025;11:7-19. doi:10.30442/ahr.1101-02-266.

Abstract

Background: Antimicrobial Stewardship programs help to promote the appropriate use of antibiotics, thereby reducing the emergence of resistance, decreasing healthcare costs, and preventing drug-related adverse events while improving patients' clinical outcomes.

Objectives: To determine the antimicrobial stewardship programme's impact using a prospective audit with feedback on antimicrobial prescribing practices in a Paediatrics department.

Methods: A baseline Point prevalence survey and post-intervention Point prevalence survey (PPS) were conducted in April 2019 and November 2019, respectively, in the Department of Paediatrics of the Lagos University Teaching Hospital (LUTH) using the global point prevalence survey (Global-PPS) of antimicrobial consumption and resistance as a tool. We compared the results from the two surveys to determine their impact on antibiotic prescribing practices in the department.

Results: At baseline PPS, 90 of 114 children (78.9%) were treated with 164 antibiotics. At post-intervention PPS, 46 out of 62 children (74.2%) were on 81 antibiotics. The antimicrobial consumption rate decreased from 79% to 74% pre- and post-intervention. The reason for antibiotic therapy documentation increased from 99.5% to 100% post-intervention.

²Department of Medical Microbiology, University of Lagos/Lagos University Teaching Hospital, Lagos.

³Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium

⁴Department of Paediatrics, University of Lagos/Lagos University Teaching Hospital, Lagos

⁵Department of Community Medicine, University of Lagos/Lagos University Teaching Hospital, Lagos

Guideline compliance increased from 43.1% to 76.5%. Stop/review date documentation increased from 42.5% to 81.5% post-intervention. Targeted therapy moved from 7.9% to 25.9%. Treatment based on biomarkers improved from 4.27% to 60.5%. ASP significantly enhanced the quality indicators $\{\chi^2:13.998; P=0.01\}$.

Conclusion: Antimicrobial Stewardship Programmes optimised antibiotic use through coordinated interventions. Point Prevalence Surveys (PPS) identify areas for improvement, and the Global PPS has proven to be an effective tool in detecting opportunities for enhancement.

Keywords: Antibiotics, Antimicrobial Resistance, Antimicrobial Stewardship Program, Biomarkers, Paediatrics, Global-PPS, Quality indicators.

Introduction

Antimicrobial resistance (AMR) has been a significant health concern globally.[1,2] The indiscriminate use of antimicrobials in healthcare settings and their increasing consumption, particularly in poor resource countries, are key factors fuelling this growing public health threat.^[1-3] The World Health Organization (WHO) has recommended active interventions and programs to reduce the burden of AMR in all healthcare settings.[1,3] An antimicrobial stewardship program (ASP) is an intervention to reduce excessive utilisation of antimicrobials in our healthcare institutions, which deals with the challenges of antimicrobial resistance.[1] However, in Nigeria, there is little information on stewardship.^[2] Only 24% of the tertiary institutions have structured ASP committees. [1-4] Antimicrobial stewardship involves various interventions to reduce inappropriate antimicrobial consumption.

The goals of ASP focus on improving patients' outcomes by improving infection cure rates, reducing hospital-acquired infection, length of admission, morbidity and mortality rates, as well as minimise consequences following the use of antimicrobials such as drug toxicity with greater interest in reducing healthcare costs and preventing antimicrobial resistance, using antimicrobial guidelines.^[1–3, 5–8]. Areas of interest include antimicrobial guidelines,^[7] appropriate dosing, duration of therapy, set of quality indicators (reason for prescribing antimicrobials;

stop/review date), and prescription based on microbiology data to improve patient's clinical outcomes and prevent the development of resistant organisms.^[9]

The Antimicrobial Stewardship Program is authorised through a multidisciplinary work team with core membership of an infectious diseases physician, a clinical microbiologist and a pharmacist with expertise clinical infection.^[7,10] The Stewardship program uses different strategic interventions classified as Persuasive, Structural, Enabling, Restrictive.[11-13]These strategies lead to direct control over antimicrobial use at an institution and educational opportunities for prescribers when a request is made.

The need for an Antimicrobial Stewardship programme has been recognised in the Lagos University Teaching Hospital (LUTHd. A point prevalence survey was carried out in LUTH in 2015^[14] and 2017^[15] to determine the rate and characteristics of antibiotic prescription. The prevalence of antibiotic prescribing in the hospital was high in all disciplines, including Paediatrics, with only about 50% of prescriptions based on clear therapeutic indications. Less than 1% of the prescriptions were based on the use of biomarkers, and the antibiotics guideline was not accessible. There was clear evidence that the hospital needed a cohesive antimicrobial stewardship program.^[15] In 2018, as part of the hospital antibiotic policy and through the effort of the antimicrobial stewardship committee, the Department of Paediatrics produced a guideline

to optimise antibiotic use and improve patient treatment and outcomes.

The Point Prevalence Survey (PPS) is a core method to identify specific areas to improve the quality of antibiotic prescribing in various healthcare settings.^[10] This tool identifies inappropriate use of specific antimicrobial agents and resistance, proposes quality indicators of prescribing antimicrobial practices, identifies targets to improve antimicrobial prescribing and use.[16] This study assessed the impact of antimicrobial stewardship on the antibiotic prescribing practices of the paediatrics department of the Lagos University Teaching Hospital (LUTH) using the Global PPS protocol. The Global-PPS employs standardised quality indicators to assess the efficacy of interventions, establish benchmarks for improvement, and evaluate the impact of implemented measures. The tool identifies current hospital practices, revealing significant variations and deficiencies in antibiotic prophylaxis and treatment. PPS data informed the development of quality indicators and performance targets for enhancing hospital antibiotic prescribing practices.

Methods

Study design and setting

This was a cross-sectional study using the Point Prevalence Survey (PPS) conducted in April 2019 as a baseline assessment of the antimicrobial prescribing practices in the paediatric wards of the Lagos University Teaching Hospital. The Department of Paediatrics comprises 150 beds, two neonatal units, and three older children wards. It has an annual admission range from 2500-4000. The PPS baseline assessment preceded a prospective audit with intervention and feedback [17] carried out using the departmental antibiotic treatment guideline as part of the AMS intervention. After six months, a post-intervention PPS was conducted in November

2019 to assess the impact of the AMS intervention in these wards using a global point prevalence survey for antimicrobial consumption and resistance protocol designed by the University of Antwerp (www.global-pps.com). Global PPS tools help identify targets to improve the quality of antimicrobial prescribing, improve healthcare quality, and assess effective interventions through repeated PPS. Global-PPS uses standardised quality indicators to evaluate interventions set, targets for improvement, and measure the impact of interventions.

Study population and eligibility criteria

All patients on the wards except in haematooncology within the paediatrics department of LUTH were the study population. All patients on the wards who were on antibiotics at a.m. on survey day were included. Patients who had already been discharged before 8 o'clock and/or admitted after that time were excluded. Antimicrobial agents for systemic use were included for PPS as follows: Antibacterial and antifungals systemic use (including for griseofulvin and Terbinafine); drugs for the treatment of tuberculosis; Antivirals and Antimalarial, while Antimicrobials for topical use were excluded from the survey.

Sample size/ Sampling methodology

In the Ward Form, the number of patients admitted was determined during a single visit made at 8 a.m. on the day of the Global-PPS. The total number of available beds attributed to inpatients of the ward surveyed at 8 a.m. was determined. This means the number of total inpatient beds at the time of the survey (Number of beds equals the total beds in the ward, both occupied and empty). This was the denominator of the Global-PPS. After that, the number of patients on antimicrobial therapy determined, and ongoing therapy was over a few days. Still, each eligible ward was visited only once during the stipulated time. This formed the numerator for the Global-PPS. Types of

indications for prescribed antibiotics were also noted.

Data collection and tools

Data were collected using standardised paper forms (wards and patients forms) for both the baseline point prevalence survey and a postintervention point prevalence survey, and the quality indicators were compared using the Global-PPS for antimicrobial consumption and resistance. The Global-PPS web-based application was used for data entry, verification, validation, and reporting as designed by the University of Antwerp (URL: http://app.globalpps.uantwerpen.be/globalpps _webpps/)

Variables: Information collected using the standardised forms included the age of the child, particular ward, antimicrobial therapy/ regimen, indication for antibiotics, route of administration, documentation of stop/review dates, reason for prescription in note, treatment decision supported by microbiology data and/ or biomarker to assess quality indicators for antimicrobial prescribing.

Quality Assurance

The percentage of patients with reasons for antibiotic use in notes and stop/review date was documented. The reason in notes and stop/review date were documented for each antibiotic level over the total scores for this indicator. The percentage of guideline compliance was counted at each patient level per antimicrobial therapy over total scores for this indicator. For combination therapy with more than one antibiotic: If one antibiotic by diagnosis is not compliant, then this combination therapy for this diagnosis was counted as non-compliant.

Data analysis

Descriptive statistics were applied for all antibiotics administered to the patients during PPS and those being reviewed for prospective audit recommendations and compliance, as well

as for positive culture, susceptibility and resistance traits. Results were presented using frequencies and proportions, contingency tables and charts. A chi-square test assessed trends and relationships in the guideline's compliance over the study period. This was done using SPSS version 22. (IBM, Corp, Armonk, NY, USA).

Ethical considerations

Ethical approval for this study was obtained from the Health Research Ethics Committee of the College of Medicine, University of Lagos, Nigeria, with an assigned number, ADM/DCST/HREC/APP/2671. **Participants** were not required to sign an informed consent form since this represents a quality improvement project undertaken within the hospital rather experimental study; however, information obtained from the participants' folders was treated as confidential.

Results

One hundred and fourteen patients were admitted during the baseline point prevalence survey; 90 (78.9%) were on 164 antimicrobials, while 46 (74.2%) of 62 eligible children were on 81 antimicrobials at the post-intervention level. The antimicrobial consumption rate decreased from 79% to 74% pre- and post-intervention. Antimicrobial use prevalence rates ranged from 66% to 92% across the four wards (Figure 1), and 66(59.4%) were on multiple antimicrobial therapies. At the antibiotic level, antibiotics were prescribed empirically; 145(88.4%); 60 (74.1%) and based on microbiology data, 13 and 21 antibiotics treatments were targeted therapies post-intervention, (7.9%;25.9%), pre-and respectively.

Treatment based on biomarkers improved from 4.27% to 60.5%. The indications for the antimicrobial prescriptions include community-acquired infections (60%, 65.4%), prophylaxis

(36%, 29.6%), and hospital-acquired infections (4%, 5%), pre-and post-intervention (Table I).

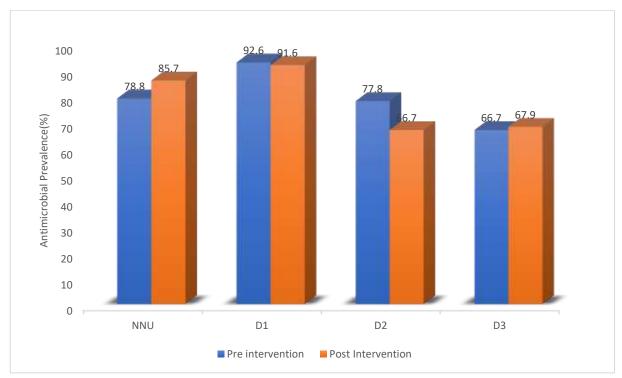


Figure 1: Antimicrobial Prevalence Rates in the Paediatric Wards
NNU - Neonatal inborn unit; D1 - Neonatal Outborn Unit; D2 - Paediatric Medical Ward; D3 - Paediatric Medical Ward

Table I: Indications for antibiotic prescription

Indications	Pre-Intervention		Post -Intervention			
	N	Total (%)	n	Total (%)		
Therapeutic						
CAI	98	60	53	65.4		
HAI	7	4	4	5.0		
Prophylaxis	59	36	24	29.6		
Total	164	100	81	100		

CAI- Community-acquired Infection, HAI- Hospital-acquired Infection. This was calculated for each antibiotic therapy

Analysis at the patient level revealed the key prescribing patterns: 66 (59.4%) were multiple antibiotic patients, defined as patients who received more than one antibiotic, and 100 (90.1%) on intravenous therapies. Intravenous therapy was 100% in the neonatal wards; it ranged from 71.4% to 88.9% in the older children's ward. The number of patients on IV increased from 91.1% to 100%, pre- and post-intervention. Antibiotic quality indicators by

activity for all patients were counted at antibacterial level; documentation of

stop/review date was 42.5%; 81.5%, Guideline compliance was 43.1%; 76.5% while reason in notes was 99.5%; 100% - pre- and post-intervention (Table II). The impact of ASP on quality indicators was statistically significant $\{\chi^2:13.998; P=0.01\}$. The most frequently used antimicrobials were amikacin (31%; 21%), cefotaxime (28%; 19%), and ceftriaxone (12%;

17%) pre- and post-intervention, for both therapeutic and prophylactic uses (Figure 2). The top diagnoses treated with antimicrobials were

sepsis 24 (30.7%), pneumonia 11 (14.1%) and nervous system infections (12.8%).

Table I: Quality indicators for antibiotic prescribing

Table I: Quality indicators for antibiotic prescribing												
	Pre-in	terventio	n n (%)			Post-intervention n (%)						
Quality												
indicator/	NN	D1	D2	D3	Total	NNU	D1	D2	D3	Total		
Wards	U											
Number of												
antibiotic	52	55	25	32	202	14	21	18	28	81		
therapies												
Reason in												
notes (%)	52	54	25	32	201	14	21	18	28	81		
	(100)	(98.1)	(100)	(100)	(99.5)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)		
Guidelines												
compliant	24	32	11	12	87	10	19 (91)	10 (56)	23 (82)	62 (76.5)		
(%)	(46.1)	(58.6)	(44)	(37.5)	(43.1)	(71)						
)											
Stop/Revie												
w date (%)	28	29	5 (20)	20	86	12	21	13 (72)	20 (71)	66 (81.5)		
	(53.8	(52.7)		(62.5)	(42.5)	(86)	(100)					
)											
Prevalence of												
	Pre-intervention PPS				Post-intervention PPS							
No of	33	27	27	27	114	7	12	15	28	62		
patients on												
admission												
Treated	26	25	21	18	90	6	11	10	19	46		
patients on												
antibiotics												
(N)												
Prevalence	26	25	16	15	82	6	11	10	19	46		
of IV	(100)	(100)	(88.9)	(71.4)	(91.1)	(100)	(100)	(100)	(100)	(100)		
therapy												

This was calculated for each antibiotic therapy, except for intravenous therapy, which was calculated based on the number of treated patients. Guideline compliance for combination therapy with >1 antibiotic: if one antibiotic by diagnosis is not compliant, this combination therapy for this diagnosis will be counted as non-compliant. Effect of ASP on quality indicators was statistically significant $\{\chi^2 = 13.998; P = 0.01\}$ NNU - Neonatal Inborn Unit; D1 - Neonatal Out-born Unit; D2 - Paediatric Medical ward; D3 - Paediatrics Medical ward.

Discussion

In Nigeria, few point prevalence studies have been conducted to assess the impact of antimicrobial stewardship programmes explicitly tailored to the paediatric population. The present study evaluated antimicrobial prescription patterns using quality indicators, revealing that nearly 79% of children were initially prescribed antibiotics. This rate of antibiotic prescription in this study aligns with findings from previous studies from some parts

of Nigeria (68.3-78.2%) [14-16] and other parts of the world. [18,19] On the other hand, the rate differs from reports from some parts of western Nigeria (59.6%) [20] and other African countries (30-57%).[10] Comparable studies reported similarly high rates (82.9-84.6%). [15,16,21] The widespread use of antibiotics in this vulnerable population, including neonates and young children, is a pressing concern that necessitates immediate attention to combat antimicrobial

resistance globally. Intensified stewardship efforts in all our healthcare settings can help improve appropriate antibiotic use and curb excessive consumption in these vulnerable age groups. The survey findings indicate a notable decline in the antimicrobial prevalence rate following the intervention. To sustain this progress, continuous education and policy implementation are essential.

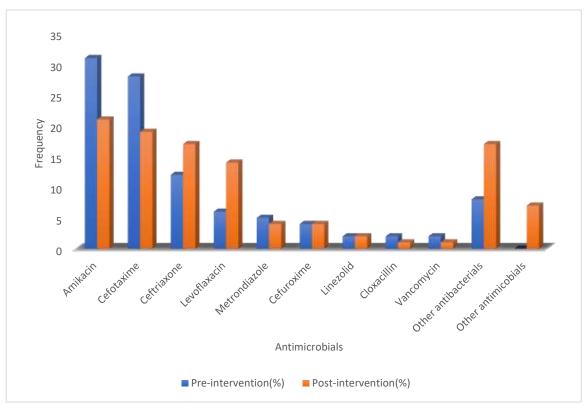


Figure 2: Most frequently used antimicrobials

The antimicrobial prescription rates in this study were 79% pre-intervention and 74% post-intervention. In contrast, a study in Thailand reported significantly lower rates, with 44.3% pre-intervention and 41.7% post-intervention.^[18] Similarly, a PPS in the UK reported a rate of 40.9%.^[22] These comparisons suggest that with prolonged implementation of antimicrobial stewardship programs, it is possible to achieve even better outcomes.

A notable example of successful antimicrobial stewardship is an outpatient surveillance interventional study, which reported broad-spectrum significant reduction in antimicrobial prescriptions from 26.8% 14.3%.^[23] This improvement surpasses the findings of the present study. The interventions employed in this study included a continuous one-hour educational session, quarterly audits, and regular feedback, which collectively enhanced adherence to prescribing guidelines.[23]

Consistent with these findings, numerous studies have demonstrated that implementing antimicrobial stewardship programs (ASPs) leads to an overall decrease in antimicrobial consumption rates.[17,18,25-27]

This institution's high antimicrobial prescription rates can be primarily attributed to the prevalent practice of empirical therapy (88.4%) and the underutilisation of the Medical Microbiology Laboratory for diagnosing infections and conducting antimicrobial susceptibility testing. [28] This is in contrast to a Swiss tertiary hospital, where antimicrobial administration was more evenly distributed among empirical (37.8%), targeted (30.8%), and prophylactic treatments (30.3%). [25] The pre-intervention study revealed a remarkably low rate of targeted therapy (7.9%), consistent with findings from western Nigeria (3.8%), [20] eastern Nigeria, [16] and other African countries. [10] This highlights a persistent challenge in optimising antimicrobial use in these regions. The underutilisation of the microbiology laboratory likely contributed to this finding, suggesting that clinicians favour empirical treatment over laboratory-guided therapy.^[28] This emphasises the need for targeted strategies to enhance awareness, accessibility, and optimal use of microbiology laboratory services. This pattern may contribute to the high antimicrobial prevalence rates in the cited studies. [28]

A significant proportion of children in the present study (59.4%) received multiple antimicrobial therapies, consistent with previous surveys conducted at this centre between 2015 and 2018 (55%-69.9%). [14] This alarming trend necessitates urgent attention, as it can contribute to antimicrobial resistance and adverse drug reactions. [29] The indiscriminate administration of antimicrobial agents for paediatric conditions has become a standard practice, significantly contributing to developing antimicrobial resistance among pathogens. Moreover, children, developing regions, especially

disproportionately exposed to antimicrobial agents compared to adults.^[4] Empirical evidence suggests that 20% and 50% of antibiotic prescriptions are unwarranted or inappropriate. ^[29] This study's findings align with previous research, highlighting the disproportionate exposure of neonates, particularly in outborn and inborn wards, to antibiotics. This demography constitutes the highest-consuming group within the paediatrics department, underscoring the need for targeted interventions to optimise antimicrobial use.^[8]

The analysis of antimicrobial prescriptions revealed that the primary indication was for community-acquired infections (CAI), accounting for 60% of prescriptions. Prophylaxis was the second most common indication, comprising 36% of prescriptions, while hospitalacquired infections accounted for a relatively small proportion (4.0%). These findings are consistent with previous studies [4,10,20], including the longitudinal reports of Point Prevalence Surveys (PPS) conducted in Nigeria in 2015, 2017, and 2018 [30] which reported similar patterns of antimicrobial use. [1-3] Similarly, a PPS in eastern Nigeria found that therapeutic purposes accounted for 51% of antimicrobial prescriptions. [4] A Swiss study also reported a significant proportion of antimicrobial prescriptions for prophylaxis (30%).^[5] These findings differ from a multicentre PPS in Turkey, which reported a distribution of antimicrobial more even between prophylactic prescriptions therapeutic purposes.^[6] This discrepancy may be attributed to variations in clinical practices, guidelines, and healthcare settings between regions. The dominance of community-acquired infections as the primary indication for antimicrobial prescriptions highlights the need targeted interventions optimise antimicrobial use in healthcare settings. Furthermore, the relatively high proportion of prescriptions for prophylaxis warrants careful evaluation to ensure that these prescriptions are justified and in line with evidence-based guidelines.

The study revealed that approximately 90.1% of intravenous patients received therapy, surpassing rates reported in Swiss (56%)[7] and West Nepal (48.9%)[8] studies. This trend is consistent with findings from various investigations conducted across Nigeria, Ethiopia, and Iran, which reported rates ranging from 70% to 100%.[14-16, 20, 21, 30-32] The high frequency of intravenous therapy may be attributed to the widespread use of amikacin and cefotaxime, which are exclusively available in intravenous formulations and are essential for treating sepsis and pneumonia, particularly in children. Neonates, being high-risk patients due their immunocompromised or critical condition, were more frequently subjected to antibiotic use. However, it is essential to reserve parenteral routes for patients who cannot tolerate oral antibiotics when oral administration is deemed unreliable in severe infections or when specific antimicrobial agents are exclusively available intravenously.[33] Excessive reliance on intravenous therapy can lead to prolonged hospital stays.[33] To address this issue, healthcare providers should receive comprehensive education on the benefits of transitioning from intravenous to oral therapy as soon as feasible.^[33] This approach can help optimise antimicrobial use, reduce hospital stays, and promote more efficient patient care.

Guideline compliance was initially observed at 43.1% across all paediatric wards, surpassing rates reported in a Sudanese study (22%-30%), [34] conducted in a similarly resource-constrained environment. This marked improvement exceeds the outcomes of other Nigerian studies. [1,14-16,30] In contrast, a Turkish paediatrics teaching hospital demonstrated a significantly higher antimicrobial compliance rate of 89%, approximately double that of intervention PPS (43%) in this study.[35] The

Turkish hospital's 89% compliance rate is noteworthy. Our post-intervention PPS results showed a significant improvement in guideline compliance, highlighting the importance of sustained antimicrobial stewardship (AMS) efforts, robust infection prevention and control measures, and hospital personnel's effective these strategies. This study adoption of demonstrated enhanced adherence antimicrobial guidelines, particularly following interventions, reaching an impressive 81.5% compliance rate compared to previous studies.[14-16,30]

Notably, this study observed a significant increase in the documentation of stop/review dates, surpassing rates reported in some Nigerian studies (21%, 27%). [1,3,15,20,30] However, it contrasts with a study conducted in eastern Nigeria, which achieved a remarkably high rate of 97%. [16] The accurate documentation of stop/review dates is crucial for guiding antibiotic stewardship, enabling prescribers to adjust therapy as needed. The omission of this critical information can compromise treatment outcomes and contribute to antibiotic misuse. Furthermore, this study demonstrated a high rate of recorded reasons for antibiotic prescriptions, ranging from 99% to 100% pre-and postintervention. While this surpasses the generally lower rates observed in other studies,[14,15,21,30] it aligns with findings from some Nigerian investigations.[16,20]

The antimicrobial usage pattern observed in this study closely resembles that reported in a previous US study, with beta-lactams, particularly cephalosporins, being frequently prescribed alongside rising resistance rates.[35] Numerous African studies, including Nigeria Europe mirror this trend. ^{16,20,21,23,26,29,31,32,35,36}] Cephalosporins should be classified as "Watch" antibiotics due to their widespread efficacy, affordability, accessibility. However, a survey undertaken in six tertiary healthcare facilities across Nigeria and India revealed a predominance of fluoroquinolones (74%) and third-generation cephalosporin (72.1%) prescriptions. [12] In contrast, a Swiss tertiary hospital reported a higher prevalence of penicillin-beta-lactamase inhibitors (30%).[25] This discrepancy may be attributed to Switzerland's enhanced access to microbiology investigations and antimicrobial guidelines.

Conclusion

This study demonstrates the effectiveness of Antimicrobial Stewardship Programmes (ASPs) in promoting optimal antibiotic use prescribing improving practices. Prevalence Surveys (PPS) are a improvement tool that identifies targeted areas resulting in reduced enhancement, antimicrobial consumption. The significant improvements in quality indicators and biomarker-guided treatments observed in this study highlight the positive impact of ASPs on clinical practice. The Global PPS quality indicators have proven to be a valuable tool for evaluating the success of antimicrobial stewardship initiatives and informing future quality improvement strategies.

To strengthen antimicrobial stewardship in Nigeria, the following strategies are recommended: a multidisciplinary collaboration, guidelines, national antimicrobial surveillance systems should be established, continuous education and training programs implemented should be for healthcare professionals, hospitals should implement antimicrobial stewardship programs promote patient and community education. Others include the need for further studies to explore innovative methods for measuring antimicrobial prescriptions and the use of incentives for healthcare professionals who adhere to antimicrobial guidelines and also hold

them accountable for inappropriate antimicrobial prescribing practices.

Acronyms

AMS- Antimicrobial Stewardship ASP- Antimicrobial Stewardship Program IV- Intravenous LUTH- Lagos University Teaching Hospital GPPS- Global Point Prevalence Survey PPS- Point Prevalence Survey

Authors' Contributions: O-BOI, OCS, APE, FBI, and OOO conceived the study while OB-OI, VA, IP, GH, APE, and OOO designed the study. O-BOI, OCS, IP, GH, FIB, and OOO did the literature review while O-BOI, OCS, APE, FBI, and OOO did data collection. All the authors analysed and interpreted the data. O-BOI, OCS, APE, and OOO drafted the manuscript. All the authors revised the draft for sound intellectual content and approved the final version of the manuscript.

Conflict of Interests: None.

Funding: Self-funded.

Publication History: Submitted 26 July 2024; **Accepted** 22 December 2024.

References

- Babatola AO, Fadare JO, Olatunya OS, Obiako R, Enwere O, Kalungia A, et al. Addressing antimicrobial resistance in Nigerian hospitals: Exploring physicians prescribing behavior, knowledge, and perception of antimicrobial resistance and stewardship programs. Expert Rev Anti Infect Ther. 2021;19:537–546 https://doi.org/10.1080/14787210.2021.1829 474
- Mistry RD, Newland JG, Gerber JS, Hersh AL, May L, Perman SM, et al. Current State of Antimicrobial Stewardship in Children's Hospital Emergency Departments. Infect Control Hosp Epidemiol 2017;38:469-475. https://doi.org/10.1017/ice.2017.3
- 3. Chukwu EE, Oladele DA, Enwuru CA, Gogwan PL, Abuh D, Audu RA, et al. Antimicrobial resistance awareness and antibiotic prescribing behavior among healthcare workers in Nigeria: A national

- survey. BMC Infect Dis. 2021;21(1):22. https://doi.org/10.1186/s12879-020-05689-x
- Orubu ESF, Robert F, Emuren L, Ifie-Ombeh B. Antimicrobial stewardship among Nigerian children: A pilot study of the knowledge, attitude, and practices of prescribers at two tertiary healthcare facilities in Bayelsa State. medRxiv 2021. https://doi.org/10.1101/2021.11.30.2126707 0.
- Renk H, Sarmisak E, Spott C, Kumpf M, Hofbeck M, Hölzl F. Antibiotic stewardship in the PICU: Impact of ward rounds led by paediatric infectious diseases specialists on antibiotic consumption. Sci Rep 2020;10:8826. https://doi.org/10.1038/s41598-020-65671-0
- Di Pentima MC, Chan S, Eppes SC, Klein JD. Antimicrobial prescription errors in hospitalised children: role of antimicrobial stewardship program in detection and intervention. Clin Pediatr (Phila) 2009;48:505– 512.
 - https://doi.org/10.1177/0009922808330774
- Mason W, Mongkolrattanothai K. Antimicrobial stewardship in pediatrics: a good beginning but we have a long way to go. Pediatrics 2015;135:180-181. https://doi.org/10.1542/peds.2014-3501
- 8. Probst V, Islamovic F, Mirza A. Antimicrobial stewardship program in pediatric medicine. Pediatr Investig. 2021;5:229–238. https://doi.org/10.1002/ped4.12292
- Di Pentima MC, Chan S, Hossain J. Benefits of a pediatric antimicrobial stewardship program at a children's hospital. Pediatrics 2011;128:1062–1070. https://doi.org/10.1542/peds.2010-3589
- 10. D'Arcy N, Ashiru-Oredope D, Olaoye O, Afriyie D, Akello Z, Ankrah D, et al. Antibiotic Prescribing Patterns in Ghana, Uganda, Zambia and Tanzania Hospitals: Results from the Global Point Prevalence Survey (G-PPS) on Antimicrobial Use and

- Stewardship Interventions Implemented. Antibiot Basel Switz 2021;10:1122. https://doi.org/10.3390/antibiotics10091122
- 11. Van Dijck C, Vlieghe E, Cox JA. Antibiotic stewardship interventions in hospitals in low and middle-income countries: a systematic review. Bull World Health Organ 2018;96:266–280. https://doi.org/10.2471%2FBLT.17.203448
- 12. Hulscher MEJL, Prins JM. Antibiotic stewardship: does it work in hospital practice? A review of the evidence base. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2017;23:799–805. https://doi.org/10.1016/j.cmi.2017.07.017
- 13. Nair MM, Mahajan R, Burza S, Zeegers MP. Behavioural interventions to address rational use of antibiotics in outpatient settings of low-income and lower-middle-income countries. Trop Med Int Health 2021;26:504–517. https://doi.org/10.1111/tmi.13550
- 14. Oshun PO, Roberts AA, Osuagwu CS, Akintan PE, Fajolu IB, Ola-Bello OI, *et al.* Roll out of a successful antimicrobial stewardship programme in Lagos University Teaching Hospital Nigeria using the Global-Point Prevalence Survey. Afr J Clin Exp Microbiol 2021;22:260–272. https://doi.org/10.4314/ajcem.v22i2.19
- Oduyebo OO, Olayinka AT, Iregbu KC, Versporten A, Goossens H, Nwajiobi-Princewill PI, et al. A point prevalence survey of antimicrobial prescribing in four Nigerian Tertiary Hospitals. Ann Trop Pathol 2017;8:42. https://doi.org/10.4103/atp.atp_38_17
- Umeokonkwo CD, Madubueze UC, Onah CK, Okedo-Alex IN, Adeke AS, Versporten A, et al. Point prevalence survey of antimicrobial prescription in a tertiary hospital in South East Nigeria: A call for improved antibiotic stewardship. J Glob Antimicrob Resist 2019;17:291–295. https://doi.org/10.1016/j.jgar.2019.01.013

- Ola-Bello OI, Akintan PE, Osuagwu CS, Fajolu IB, Nwaiwu O, Oduyebo OO, et al.
 'Prospective audit with intervention and feedback' as a core antimicrobial stewardship strategy in the paediatrics department of a Nigerian tertiary hospital. Niger Postgrad Med J 2023;30:137. https://doi.org/10.4103/npmj.npmj_257_22.
- 18. Chautrakarn S, Anugulruengkitt S, Puthanakit Rattananupong Τ, Τ, Hiransuthikul N. Impact of a Prospective Audit Feedback Antimicrobial and Stewardship Program in Pediatric Units in Tertiary Care Teaching Hospital in Thailand. Pediatr. 2019;9(11):851-858. https://doi.org/10.1542/hpeds.2019-0027
- Ceyhan M, Yildirim I, Ecevit C, Aydogan A, Ornek A, Salman N, et al. Inappropriate antimicrobial use in Turkish pediatric hospitals: a multicenter point prevalence survey. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2010;14(1):e55-61. https://doi.org/10.1016/j.ijid.2009.03.013
- 20. Fowotade A, Fasuyi T, Aigbovo O, Versporten A, Adekanmbi O, Akinyemi O, *et al.* Point Prevalence Survey of Antimicrobial Prescribing in a Nigerian Hospital: Findings and Implications on Antimicrobial Resistance. West Afr J Med 2020;37:216–220.
- Abubakar U. Antibiotic use among hospitalised patients in northern Nigeria: a multicentre point-prevalence survey. BMC Infect Dis 2020; 20, 86.
- 22. Gharbi M, Doerholt K, Vergnano S, Bielicki JA, Paulus S, Menson E, et al. Using a simple point-prevalence survey to define appropriate antibiotic prescribing in hospitalised children across the UK. BMJ Open.2016;6:e012675. https://doi.org/10.1136/bmjopen-2016-012675
- 23. Principi N, Esposito S. Antimicrobial stewardship in paediatrics. BMC Infect Dis

- 2016;16:424. https://doi.org/10.1186/s12879-016-1772-z
- Quaak CH, Cové E, Driessen GJ, Tramper-Stranders GA. Trends in paediatric inpatient antibiotic therapy in a secondary care setting.
 Eur J Pediatr 2018;177:1271–1278.
 https://doi.org/10.1007/s00431-018-3185-z
- Gürtler N, Erba A, Giehl C, Tschudin-Sutter S, Bassetti S, Osthoff M. Appropriateness of antimicrobial prescribing in a Swiss tertiary care hospital: a repeated point prevalence survey. Swiss Med Wkly. 2019;149:w20135. https://doi.org/10.4414/smw.2019.20135
- 26. Kpokiri EE, Ladva M, Dodoo CC, Orman E, Aku TA, Mensah A, et al. Knowledge, Awareness and Practice with Antimicrobial Stewardship Programmes among Healthcare Providers in a Ghanaian Tertiary Hospital. Antibiot Basel Switz 2021;11:6. https://doi.org/10.3390/antibiotics11010006
- Roberts AA, Fajolu I, Oshun P, Osuagwu C, Awofeso O, Temiye E, et al. Feasibility study of prospective audit, intervention and feedback as an antimicrobial stewardship strategy at the Lagos University Teaching Hospital. Niger Postgrad Med J 2020;27:54– 58.
- 28. Iregbu KC, Osuagwu CS, Umeokonkwo CD, Fowotade AA, Ola-Bello OI, Nwajiobi-Princewill PI, *et al.* Underutilisation of the Clinical Microbiology Laboratory by Physicians in Nigeria. Afr J Clin Exp Microbiol 2020;21:53-59.
- Bassetti S, Tschudin-Sutter S, Egli A, Osthoff
 A. Optimising antibiotic therapies to reduce
 the risk of bacterial resistance. European
 Journal of Internal Medicine. 2022;99:7-12
 https://doi.org/10.1016/j.ejim.2022.01.029.
 (https://www.sciencedirect.com/science/ar
 ticle/pii/S0953620522000395)
- 30. Umeokonkwo CD, Oduyebo OO, Fadeyi A, Versporten A, Ola-Bello OI, Fowotade A, *et al.* Point prevalence survey of antimicrobial

- consumption and resistance: 2015-2018 longitudinal survey results from Nigeria. Afr J Clin Exp Microbiol 2021;22:252-259.
- Gobezie, MY, Tesfaye NA, Faris AG, Hassen, M. Surveillance of antimicrobial utilisation in Africa: a systematic review and meta-analysis of prescription rates, indications, and use quality from point prevalence surveys. Antimicrob Resist Infect Control. 2024;13:101. https://doi.org/10.1186/s13756-024-01462-w
- 32. Aghogorvia TM, Ola-Bello OI, Mabogunje C, Versporten A, Pauwels I, Goossens H, *et al.* The global point prevalence survey of antimicrobial consumption and resistance (Global-PPS): First results of antimicrobial prescribing in a children's hospital in Nigeria. Niger J Paediatr 2023;50:129-135. https://doi.org/10.4314/njp.v50i3.1.
- 33. Ines M, Julia B. What Can We Do About Antimicrobial Resistance? Pediatr Infect Dis J 2019;38:S33–S38; https://doi.org/10.1097/INF.00000000000002 321

- 34. Otim ME, Demaya DK, Al Marzouqi A, Mukasa J. Are Antibiotics Prescribed to Inpatients According to Recommended Standard Guidelines in South Sudan? A Retrospective Cross-Sectional Study in Juba Teaching Hospital. J Multidiscip Healthc 2021;14:2871–2879.
 - https://doi.org/10.2147/JMDH.S321990
- 35. Mugada V, Mahato V, Andhavaram D, Vajhala SM. Evaluation of Prescribing Patterns of Antibiotics Using Selected Indicators for Antimicrobial Use in Hospitals and the Access, Watch, Reserve (AWaRe) Classification by the World Health Organization. Turk J Pharm Sci 2021;18:282–288.

 https://doi.org/10.4274/tjps.galenos.2020.1
- 36. Magsarili HK, Girotto JE, Bennett NJ, Nicolau DP. Making a Case for Pediatric Antimicrobial Stewardship Programs. Pharmacotherapy 2015;35::1026–1036. https://doi.org/10.1002/phar.1647

This open-access document is licensed for distribution under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0). This permits unrestricted, non-commercial use, reproduction and distribution in any medium, provided the original source is adequately cited and credited.