

ISSN: 2476-8642 (Print)
ISSN: 2536-6149 (Online)

www.annalsofhealthresearch.com
African Index Medicus, Crossref, African Journals
Online, Scopus, C.O.P.E &
Directory of Open Access Journals

(The Journal of the Medical and Dental Consultants' Association of Nigeria, OOUTH, Sagamu, Nigeria)

Volume 11 | **No. 1** | **Jan - Mar., 2025**

IN THIS ISSUE

- Childhood Cataract
- Antibiotic Stewardahip
- Anxiety and Depression Among Undergraduates
- Quality of Life and Mental Illness in the Elderly
- Adiposity and Pro-inflammatory Indices in Hypertension
- Sexual. Assault Documentation
- Surgical and Assisted Vaginal Deliveries
- Acceptability of Rotavirus Vaccine
- Paediatric Thyroid Disorders
- TENIS Syndrome
- Behavioural Modification in Hypertension
- Ocular Prosthetics for Traumatic Enucleation

PUBLISHED BY THE MEDICAL AND DENTAL CONSULTANTS ASSOCIATION OF NIGERIA, OOUTH, SAGAMU, NIGERIA.

www.mdcan.oouth.org.ng

Annals of Health Research

(The Journal of the Medical and Dental Consultants Association of Nigeria, OOUTH, Sagamu, Nigeria)
CC BY-NC
Volume 11, Issue 1: 40-50

March 2025 doi:10.30442/ahr.1101-05-269

ORIGINAL RESEARCH

Adiposity, Proinflammatory Indices, Apolipoproteins and Antioxidants' Activities in Relation to the Severity of Hypertension

Amballi Adebayo A*1, Olooto Wasiu E1, Oyewole Grace O2, Onayemi Adedeji A1, Olawore Peace I1

¹Department of Chemical Pathology and Immunology, Faculty of Basic Clinical Sciences, Olabisi Onabanjo University, Sagamu Campus

*Correspondence: Dr AA Amballi, Department of Chemical Pathology and Immunology, Faculty of Basic Clinical Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.

E-mail: amballi.adebayo@oouagoiwoye.edu.ng; ORCID - https://orcid.org/0000-0002-7828-7270.

Citation: Amballi AA, Olooto WE, Oyewole GO, Onayemi AA, Olawore PI. Adiposity, Proinflammatory Indices, Apolipoproteins, and Antioxidants' Activities in Relation to the Severity of Hypertension. Ann Health Res 2025;11:40-50. https://doi.org/10.30442/ahr.1101-05-269.

Abstract

Background: Hypertension is an important risk for several chronic illnesses, notably heart failure, stroke, chronic renal disease and others. In these chronic disease conditions, promising biochemical parameters could be of immense diagnostic value.

Objectives: To investigate adiposity indices, lipid Profile, apolipoproteins, proinflammatory markers and antioxidant status among subgroups of hypertensive patients.

Methods: The study involved 150 participants aged 18-65 years, consisting of 50 normotensives as control subjects and 100 hypertensive individuals as the test group. The blood pressures (BP) of the participants were measured. Their body mass index and waist-to-hip ratio were calculated. Serum lipid profile, serum levels of apolipoprotein-A, apolipoprotein-B, glutathione, catalase, superoxide dismutase, high sensitivity C-reactive protein, tumour necrosis factor-α and interleukin-6 were also measured.

Results: There was a significant increase (p<0.001) in adiposity measures, Apo-B (p<0.001), IL-6 (p<0.001), hs-CRP levels (p<0.001), and dyslipidaemia among hypertensive patients. Apo A (p<0.001), glutathione (p<0.001) and SOD (p<0.001) showed significantly lower levels in the test group. A strong positive correlation was observed between BP and anthropometric profiles (BMI, WC; r = 0.754; p = 0.001), serum lipids (TC, triglycerides; r = 0.417; p = 0.01), Apo-B (r = 0.726; p = 0.01) and proinflammatory markers (TNF- α , IL-6; r = 0.845; p = 0.01). Also, a strong negative but significant correlation existed between BP and antioxidants (GSH, SOD; r = -0.632; p = 0.01), and Apo-A (r = -0.838; p = 0.01).

Conclusion: The study showed that adiposity indices, serum lipid parameters, serum apolipoproteins, proinflammatory markers and antioxidants could serve as diagnostic tools for complications of hypertension.

²Department of Biochemistry, Babcock University, Ilishan-Remo

Keywords: Anthropometry, Antioxidants, Dyslipidaemia, Hypertension, Serum lipid profile, Proinflammatory markers.

Introduction

Hypertension is an important cardiovascular disease that is associated with significant mortality and morbidity all over the world. It has defined and classified using recommendations of the Seventh Joint National Committee for the Prevention, Detection, Evaluation and Treatment of High Blood Pressure. [1] It is defined as blood pressure higher than normal; normal (systolic < 120mmHg, diastolic < 80mmHg). Hypertension is classified into mild or pre-hypertension (systolic 120-139mmHg, diastolic 80-89mmHg), moderate or Stage 1 (systolic 140-159, Diastolic 90-99mmHg) and severe or Stage 2 (Systolic 160mmHg and above, Diastolic 100mmHg and above). Globally, it was reported in the year 2010 that the prevalence of hypertension in the world was estimated to be 31% of adults (1.39 billion) [2]. This has increased tremendously and is projected to reach about 1.56 billion in 2025 [2]. In Africa, prevalence of cumulative estimated hypertension is 30.8%. [3] In Nigeria, hypertension prevalence has been increasing over the past several decades, with recent estimates ranging from 20% to 40%, and varies by region. [4]

Notable biomarkers of hypertension that are of diagnostic value in predicting and diagnosing hypertension have been identified; these include plasma renin, aldosterone, albumin/creatinine ratio, C-reactive protein, brain natriuretic peptide, fibrinogen, homocysteine, and plasminogen activator inhibitor-1.^[5] Microalbuminuria has been identified in diabetic hypertensives. ^[6]

Hypertension affects all socio-economic and income strata as a result of its many

complications which include myocardial infarction, heart failure, chronic kidney disease, stroke, peripheral artery disease (PAD), metabolic syndrome, retinopathy and sexual dysfunction. Progression of hypertension and development of associated complications reflect structural and functional cardiovascular abnormalities and resultant damage to organs, leading to premature morbidity and mortality. [7, 8]

Usually, hypertension occurs without any (primary identifiable cause or essential hypertension). Still, it may also be secondary to an underlying condition such as congenital abnormalities involving blood vessels, sleep apnea, medications and drugs (steroids, birth control pills, cocaine and amphetamines), chronic kidney disease, thyroid gland disease, and adrenal gland tumours. The risk factors include age (> 60 years), race (common among blacks and people of African heritage), genetics, overweight or obesity, tobacco (smoking or chewing), excessive sodium salt consumption, excessive alcohol consumption, and stress (mental, economic, job, domestic). Hypertension and other factors such as tobacco smoking, diabetes mellitus, obesity, physical inactivity, dyslipidemia, and hypercholesterolemia are classified as modifiable cardiovascular risk factors while age, sex, and race are nonmodifiable risk factors. [7, 9]

Inflammation protects tissues by involving inflammatory cells that phagocytose infecting agents and assist in tissue repair through proinflammatory mediators such as cytokines and prostaglandins. [10, 11] Excessive increased intravascular inflammatory processes and oxidative stress are of aetiological importance and therapeutic target in prognosticating hypertension, though the link between the two

processes has not been clarified. Factors such as pathogens, trauma, surgery, burns, cancer, damaged cells and toxic compounds induce inflammatory responses in the affected organs, leading to tissue damage or disease. Such produce proinflammatory diseases some of markers diagnostic and therapeutic importance in managing inflammatory diseases. The most commonly used inflammatory markers in clinical practice are C-reactive protein (CRP), erythrocyte sedimentation rate, plasma viscosity, and procalcitonin. Other promising biochemical parameters could be diagnostic values in chronic disease conditions that are yet to be used as markers. Hence, this study determined adiposity indices, serum apolipoproteins, and antioxidant status across varying levels of severity in hypertension.

Methods

Study location

This study was carried out at the General Outpatient Department (GOPD) of Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu between 19 June and 21 July 2023.

Study design and sample size

The research was a cross-sectional and casecontrol study involving participants enlisted via a systematic random sampling method who attended the GOPD of OOUTH within four weeks of the study. The sample size was determined using the Yamane formula based on the hospital record of the average GOPD monthly attendance of adults (age range 18-65 years) over the past six months. [12] One hundred and fifty patients were purposefully recruited, comprising hundred (100)newly diagnosed one hypertensive patients (test group) and fifty (50) non-hypertensive subjects (control group). The test group were newly diagnosed hypertensive patients attending or referred to OOUTH from nearby villages/towns who had not commenced antihypertensive medications. The control group comprised individuals who came to the hospital with patients and some normotensive hospital workers. Participants' socio-demographic characteristics such as age, sex, and social habits (cigarette smoking and alcohol intake) were extracted using structured study proforma.

Inclusion and exclusion criteria

Included in the study were consenting newly diagnosed patients with hypertension who were yet to be commenced on antihypertensive drugs (to avoid the likely influence of these drugs on the studied parameters) and non-hypertensive control subjects, male and female genders, aged 18 to 65 years. Excluded from the study were hypertensive patients on medication, active cigarette smokers, chronic alcoholic users, obese individuals, individuals on steroids, those with diabetes mellitus and chronic kidney diseases, and other cardiovascular diseases.

Biophysical measurements

Anthropometric data (height, weight, hip circumference (HC), and waist circumference (WC) were measured using standard procedures. Body Mass Index (BMI), waist-to-hip ratio (WHR), and percentage body fat (%BF) were computed for tests and controls. BMI = weight /height², WHR = WC/HC; and %BF = [(1.2 x)]BMI) + $(0.23 \times age)$ – 16.2]. The tests and controls were categorised based on BMI as healthy (18.5-24.9 kg/m²), overweight (25.0-29.9 kg/m²), and obese (≥30.0 kg/m²) respectively. Blood pressure measured using was mercurial sphygmomanometer while participants were seated with their arms rested. Two recordings were made at 30 minutes intervals, and the average value was recorded. The systolic and diastolic blood pressure was determined using the first and fifth phases of Korotkof sounds, respectively. Hypertension was defined as systolic blood pressure (SBP) and diastolic blood pressure (DBP) greater than 120 mmHg and 80 mmHg respectively. The hypertensive patients were further categorised as mild (SBP 120-139; DBP 80-89), moderate (SBP 140-159; DBP 90-99), and severe (SBP \geq 160; DBP \geq 100) based on established criteria. ^[13] A WHR value of \geq 0.90 in males and \geq 0.85 in females showed heightened susceptibility to diseases. ^[14]

Sample collection and storage

Ten millilitres (10 mL) of fasting venous blood (8-10 hours overnight fast) was aseptically drawn from each participant through the antecubital vein into plain bottles. The blood samples were allowed to be clotted and centrifuged at 5000 rpm for five minutes to obtain the serum, which was separated into plain sterile bottles. Two millilitres (2 mL) of serum sample were used to determine high sensitivity C-Reactive Protein (hs-CRP) immediately after separation while the remaining sample was stored at -20°C until assayed.

Biochemical analysis

Fasting serum triglycerides, serum total cholesterol, high-density lipoprotein (HDL), Apo-A, Apo-B, vitamin A, C, E, catalase, glutathione, superoxide dismutase (SOD), hs-CRP, interleukine-6 (IL-6), and tumour necrosis factor-α (TNF-α) were determined using standard methods. [15-26] The low-density lipoprotein (LDL), atherogenic index (AI: LDL/HDL), coronary risk index (CRI: total cholesterol/HDL), and Apo-B/Apo-A ratio were calculated. [15, 27, 28]

Statistical analysis

The Statistical Package for Social Sciences (SPSS) version 25 was used for data analysis. Descriptive statistics were used to describe and represent variables, and the differences in mean between the groups were assessed using one-way analysis of variance (ANOVA). *P* values less than 0.05 defined statistical significance.

Ethical considerations

Ethical approval was obtained from the Health Research Ethics Committee of Olabisi Onabanjo University Teaching Hospital before the study was commenced (OOUTH/HREC/586/2023AP). Written informed consent to participate in the study was obtained from each subject using an informed consent form.

Results

The hypertension group comprised 53 females and 47 males (Figure 1). Table I shows a significant relationship between central adiposity, as measured by waist circumference, waist-to-hip ratio, and hypertension.

From Table II, the direct relationship between dyslipidaemia and hypertension was indicated in this study: mean levels of serum Total Cholesterol. Triglycerides, Low-Density Lipoprotein and very Low-Density Lipoprotein were significantly higher in hypertensive patients compared with the control. The mean high-density lipoprotein level was significantly lower in hypertensive patients than in the control group. The Atherogenic Index was also significantly higher in hypertensive patients compared with the control. Table III shows there was a significantly lower mean serum glutathione and SOD levels but non-significant lower mean levels of serum catalase, vitamins A, C, and E levels among hypertensive patients compared with the control group. Furthermore, Table III shows significantly higher mean levels proinflammatory cytokine among hypertensive patients than the control group. The mean C-reactive protein levels were significantly higher in the hypertensive group than in the control group.

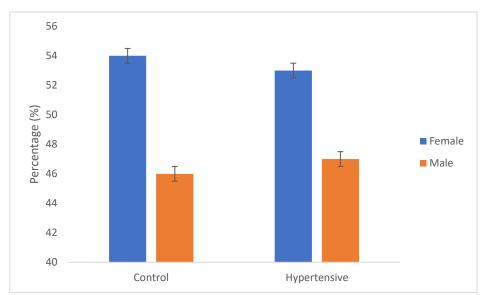


Figure I: Gender distribution among hypertensive patients and the controls

Table I: Mean anthropometric parameters of the hypertensive group and the control group

		1	71	1	0 1	
Parameters	Controls		Hypertension Group	F	p-value	
	n = 50	Mild, n = 11	Moderate, n = 62	Severe, n = 27		
Age (years)	55.44±8.69	54.73±8.04	59.37±7.97	49.96±10.37	3.666	0.014
Weight (kg)	71.08±12.25	73.54±1.80	76.29±0.78	78.97±1.03	12.191	< 0.001
Height (m)	1.68±0.06	1.56±0.03	1.56±0.05	1.57±0.05	63.116	< 0.001
BMI (kg/m²)	23.79±2.89	28.90±1.49	30.94±1.44	31.01±2.16	100.23	< 0.001
WC (cm)	32.66±1.51	36.36±1.96	36.84±1.64	38.00±1.54	89.167	< 0.001
HC (cm)	37.92±2.16	39.91±0.83	41.18±1.37	41.93±1.52	47.52	< 0.00
WHR	0.86 ± 0.06	0.91±0.06	0.90±0.05	0.91±0.04	5.613	0.001
% Body Fat (%)	25.10±3.84	31.06±3.18	33.50±2.34	34.89±2.65	91.864	< 0.00
Systolic (mmHg)	112.24±7.35	135.00±0.00	143.21±2.02	163.22±2.39	823.365	< 0.00
Diastolic (mmHg)	76.00±5.35	91.64±1.57	94.44±3.04	97.96±4.10	250.989	< 0.00

BMI - Body Mass Index, WC - Waist Circumference, HC - Hip circumference, WHR - Waist-Hip Ratio.

In Table IV, Pearson correlation showed a strong, positive and significant correlation between blood pressure, anthropometric parameters, serum lipid profile (Total Cholesterol and Triglycerides) and inflammatory markers. On the

other hand, a strong, negative but significant correlation existed between blood pressure and antioxidant activities (GSH, SOD) among hypertensive patients when compared with the control group.

Table II: Mean serum fasting lipids levels and lipoproteins levels among the hypertensive group and the control

Parameters Parameters	Controls	H	F	p-value		
	n = 50	Mild, n = 11	Moderate, n = 62	Severe, n = 27		
Cholesterol (mg/dL)	157.80±24.93	180.18±31.23	194.10±43.26	200.56±48.55	10.763	< 0.001
Triglycerides(mg/dL)	90.84±31.37	105.64±31.06	110.50±28.71	119.59±33.96	6.217	0.001
HDL (mg/dL)	58.62±13.90	56.91±7.66	50.24±7.10	48.44±8.37	9.02	< 0.001
LDL (mg/dL)	81.02±27.23	102.15±37.12	121.76±45.59	128.19±49.34	12.06	< 0.001
VLDL (mg/dL)	18.17±6.27	21.13±6.21	22.10±5.74	23.92±6.79	6.217	0.001
AI	1.53±0.78	1.88±0.91	2.50±1.07	2.76±1.28	12.188	< 0.001
CRI	2.86±0.88	3.26±0.93	3.95±1.10	4.27±1.32	14.117	< 0.001
Apo-A (g/L)	2.13±0.47	0.90 ± 0.08	0.40±0.14	0.33±0.07	383.876	< 0.001
Apo-B (g/L)	0.83±0.52	0.91±0.10	1.97±0.38	2.12±0.21	101.902	< 0.001
Apo-B/Apo-A	0.41±0.27	1.01±0.14	5.70±2.67	6.89±1.91	104.111	< 0.001

AI - Atherogenic Index, CRI - Coronary Risk Index, Apo-A - Apolipoprotein A, Apo-B - Apolipoprotein B.

Table III: Mean serum antioxidant and proinflammatory markers among the hypertensive group and the control group

Parameters	Control	Ну	F	p-value		
	n = 50	Mild, n = 11	Moderate, $n = 62$	Severe, n = 27		
Vitamin A (mcg/mL)	4.28±1.38	4.00±1.71	3.61±1.06	3.78±1.38	5.019	0.003
Vitamin C (ng/mL)	49.32±16.98	47.00±6.09	43.86±15.54	42.37±13.86	1.681	0.174
Vitamin E (mg/mL)	6.15±2.59	5.85±1.90	5.72±2.02	5.70±1.86	0.424	0.736
Glutathione (IU/gHb)	0.205±0.19	0.017±0.02	0.004±0.001	0.003±0.001	34.322	< 0.001
SOD (IU/gHb)	3.29±0.72	3.05±0.24	2.94±0.37	2.81±0.32	6.841	< 0.001
Catalase (U/mgHg)	2.13±0.11	0.23±0.23	0.15±0.14	0.10±0.08	1.005	0.393
hsCRP (mg/L)	1.02±0.12	1.63±0.05	2.15±0.12	2.98±0.08	2060.754	< 0.001
TNF-α (pg/mL)	12.43±0.61	15.46±0.62	16.06±0.56	16.14±0.47	454.025	< 0.001
IL-6 (pg/mL)	2.50±0.09	3.51±0.36	3.74±0.27	4.80±0.35	518.335	< 0.001

SOD – Superoxide dismutase; hsCRP – High sensitivity C-Reactive Protein; TNF-a - Tumour Necrosis Factor-Alpha; IL – interleukin.

Discussion

Generally, the prevalence of hypertension increases with age, occurring more in males than females. Females experience a higher rise in blood pressure from the third decade of life, thus having a comparatively accelerated prevalence of hypertension with age and a higher risk of developing adverse cardiovascular outcomes,

even at relatively lower blood pressure thresholds. ^[29] Premenopausal women, as they go through the transition into menopause, may exhibit a higher prevalence of hypertension. The findings in this study suggest a higher prevalence of hypertension among women (53%) compared to men (47%). However, this only reflects the presence of more females in the subjects studied. This finding corroborates the report of a previous

study in this respect. ^[29] This observation may reflect variations in blood levels of sex hormones and their influence on the renin-angiotensin-aldosterone system (RAAS). Other reasons why females may predominate in the hypertension group include sustained effects of preconceptual

birth control pills, sustained preeclampsiainduced vascular damage, socioeconomicinduced psychologic effects, exhibition of high genetic predisposition among women, or high prevalence of comorbidities with vascular damaging effects among women.

Table IV: Correlations among anthropometric measures, blood pressure, antioxidants and inflammatory markers

	BMI	WC	SBP	DBP	TC	TG	Apo A	Аро В	GSH	SOD	TNF	IL-6
BMI	1											
WC	.619**	1										
SBP	.754**	.777**	1									
DBP	.720**	.747**	.878**	1								
TC	.392**	.323**	.417**	.410**	1							
Trig	.356**	.239**	.309**	.253**	0.03	1						
Apo A	771**	736**	838**	849**	424**	313**	1					
Аро В	.632**	.594**	.726**	.714**	.290**	.216**	722**	1				
GSH	542**	524**	632**	576**	319**	263**	.631**	498**	1			
SOD	405**	321**	322**	333**	218**	174*	.342**	261**	.192*	1		
TNF	.771**	.776**	.845**	.854**	.402**	.313**	893**	.707**	607**	342**	1	
IL-6	.727**	.733**	.927**	.831**	.354**	.346**	817**	.690**	536**	312**	.800**	1

BMI - Body Mass Index; WC - Waist Circumference; SBP - Systolic Blood Pressure; DBP - Diastolic Blood Pressure; TC - Total Cholesterol; Trig - Triglycerides; Apo A - Apoprotein A; Apo B - Apoproteins B; GSH - Glutathione; SOD - Superoxide dismutase; TNF - Tumour Necrosis Factor; IL - Interleukin

The present study also shows the relationship between adiposity and hypertension. While BMI identifies individuals with an increased risk of adiposity-related adverse outcomes, WC (HC and WHR) is often used as a surrogate of subcutaneous and visceral fast deposit. [30] In other words, WC (HC or WHR) measures central adiposity, which is directly linked to hypertension as a progressive increase in blood pressure and increases extracellular matrix and adipose tissue. [31] The findings in this study reveal a trend of increasing mean SBP and DBP with hypertension severity in the test group with the mean SBP values of 135.00±0.00mmHg, 143.21±2.02mmHg and 163.22±2.39mmHg for mild, moderate and severe hypertension. Similarly, **DBP** values mean were 91.64±1.57mmHg, 94.44±3.04mmHg, and 97.96±4.10mmHg for mild, moderate, and severe hypertension. A similar trend was observed concerning obesity in the hypertension group, with the mean BMI values progressively increasing with increasing severity of hypertension. The direct relationship between hypertension and obesity in this study is in agreement with a previous report. [31] The mechanism responsible for this observation is explained by changes in adipose-derived cytokines, which have been reported to be a causative factor in hypertension. [32]

On the pattern of lipid profile in the present study, the mean serum levels of total cholesterol, triglycerides, LDL, and VLDL increased with a decrease in serum HDL concentrations in a severity-dependent manner were observed among hypertensive patients when compared with the controls. The pattern of alterations in the

lipid profile is such that the mean serum levels progressively increased in relation to the severity of hypertension.

The lipoproteins also showed variations with significantly higher levels mean apolipoprotein-B (Apo B) but significantly lower mean levels of apolipoprotein-A (Apo A) in the severity-dependent manner. dyslipidaemia observed in the hypertensives, with severity in direct relation to the severity of hypertension, is a result of abnormalities of lipoprotein metabolism. [33] The atherogenic index (AI) and coronary risk index (CRI) were observed to be higher among the hypertensive patients in a severity-dependent manner. The pattern of the atherogenic index, coronary risk index and lipoproteins observed in this study reflects the changes and extents of CVD complicating hypertension, according to the severity of hypertension, as these indices are markers of CVD. [34]

The determination of antioxidant levels is an indirect reflection of oxidative stress. Oxidative stress has been described as a unifying factor linking blood pressure regulatory systems involving the cardiovascular system, kidneys, brain, and immune cells to each other. [35] The findings from this study suggest significantly lower levels of serum glutathione and SOD but non-significant lower levels of serum catalase, vitamins A, C, and E levels in the hypertensive group, in a severity-dependent manner when compared to the controls.

The observed lower mean serum values of antioxidants (enzymic and non-enzymic) concentrations in the hypertension group reflect the involvement of oxidative stress in hypertension, worse in severe hypertension and least in mild hypertension. This finding corroborates the reported decrease in blood antioxidant enzyme activities (SOD, glutathione peroxidase, and catalase) among hypertensive

patients in a similar study. [36] The observed lowering of serum antioxidant levels depicts the increased generation of free radicals and reflects the involvement of antioxidants in mopping up excess systemic free radicals. This is responsible for some degree of imbalances between prooxidants and antioxidants' activities in the body, suggesting oxidative stress as a pathogenic factor and, thus, antioxidants as therapeutic in hypertension. Serum levels of pro-oxidants are, therefore, highest among individuals with severe hypertension and lowest among patients with mild hypertension.

In response to inflammatory conditions, there is increased local or systemic production of proinflammatory cytokines (IL-1β, IL-6, TNF-α), which induce the production of CRP by the liver as an acute-phase reactant. High-sensitivity C-Reactive Protein could be a dependable biomarker of chronic inflammation and predictor of cardiovascular events among healthy subjects and during inflammatory conditions due to its long half-life, stable circulating levels, and minimal circadian variation. This study revealed a significantly higher serum hs-CRP among hypertensive patients in a severity-dependent manner when compared to the controls. Similar elevation of hs-CRP had earlier been reported in patients with cardiometabolic risk factors including metabolic syndrome, obesity, dyslipidaemia, diabetes mellitus, and hypertension. [37]

Interleukin-6 is a major proinflammatory cytokine, having a pivotal role in inflammatory processes involved in inflammatory disease. In the present study, a significantly higher mean serum IL-6 level was observed in a severity-dependent manner among hypertensive patients when compared to the controls. This corroborates an earlier report of increased IL-6 levels in hypertensive patients. [38] Several other studies have reported that inflammation contributes to the pathogenesis of hypertension. [39] Therefore,

the finding observed in this study suggests that inflammation plays an essential role in hypertension.

Strong, positive correlations were observed between blood pressure (SBP, DBP) and anthropometric indices (BMI, WC), serum lipid profile (total cholesterol, triglycerides), Apo-B and proinflammatory markers (TNF-α, IL-6). Also, a strong negative correlation exists between blood pressure and serum levels of antioxidants (GSH, SOD) and Apo-A.

Conclusion

Based on the findings in this study, hypertension may be associated with adiposity dyslipidaemia, reduced anti-oxidants and increased proinflammatory activities. biochemical parameters are useful for diagnostic, prognostic, and therapeutic monitoring. Patterns dyslipidaemia, reduced antioxidant concentrations and high concentrations of proinflammatory entities vary with the severity of hypertension. These biomarkers are useful in the clinical management of hypertension.

Acknowledgement: The authors wish to thank the members of staff and the patients of the Outpatient Department of Olabisi Onabanjo University Teaching Hospital for the opportunity to carry out the research. Authors' Contributions: AAA and OWE conceived and designed the research. AAA, OWE, and OPI performed data analysis and interpretation. AAA, OGO, and OPI drafted the manuscript. OWE and OAA revised the draft for sound intellectual content. All the authors approved the final version of the manuscript. Conflicts of Interest: None.

Funding: Self-funded.

Publication History: Submitted 31 January 2025; **Accepted** 22 March 2025.

References

- 1. Jeffery M. Hypertension Guidelines: Revisiting the JNC 7 Recommendations. J Lancaster Gen Hosp 2008;3:91-97.
- Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol 2020;16:223-237. https://doi.org/10.1038/s41581-019-0244-2.
- 3. Nomin B, Azahar NM, Kitaoka K, Kobayashi Y, Yano Y. African control of hypertension through innovative epidemiology and a vibrant ecosystem (ACHIEVE): Novel strategies for accelerating hypertension control in Africa. J Hum Hypertens 2025;39:83-85.

https://doi.org/10.1038/s41371-023-00845-7.

- Ogungbe O, Abasilim C, Huffman MD, Ojji D. Hypertension Treatment in Nigeria Program Team. Improving hypertension control in Nigeria: early policy implications from the Hypertension Treatment in Nigeria program. Glob Health Res Policy 2024;9:1-9. https://doi.org/10.1186/s41256-024-00368-9.
- Hata M, Mujadzic H, Skeete J, DiPette DJ. Historical, present, and emerging biomarkers in hypertension: a narrative review. J Lab Precis Med 2022;7:1-12. https://doi.org/10.21037/jlpm-22-7407.
- Amar J, Shere A, Eletta O, Goyal H. Circulating blood biomarkers in essential hypertension: A literature review. J Lab Precis Med 2017;2:1-12. https://doi.org/10.21037/jlpm.2017.12.06.
- Johannesen CDL, Langsted A, Mortensen MB, Nordestgaard BG. Association between low-density lipoprotein and all-cause and cause-specific mortality in Denmark: Prospective cohort study. BMJ 2020;371:m4266.

https://doi.org/10.1136/bmj.m4266.

- 8. Nayor M, Vasan RS. Cholesterol treatment guidelines: a comparison with international guidelines. Circulation 2016;133:1795-1806. https://doi.org/10.1161/CIRCULATIONA HA.116.021407.
- 9. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. ESC/EAS

- Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020;41:111-188
- https://doi.org/10.1093/eurheartj/ehz455.
- Koh TJ, Dipietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 2011;13:e23. https://doi.org/10.1017/S1462399411001943
- 11. Choi B, Lee C, Yu JW. Distinctive role of inflammation in tissue repair and regeneration. Arch Pharm Res 2023;46:78-89. https://doi.org/10.1007/s12272-022-01356-7
- 12. Yamane Y. Mathematical formulae for sample size determination. 1967.
- American Heart Association. Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71:e13-e115. doi:10.1161/HYP.0000000000000065.
- 14. Christian O, Yaa O, Emmanuel A, Enoch OA, Emmanuel T, Evans AA, *et al.* Association of waist circumference and waist-to-height ratio with cardiometabolic risk factors among Type II diabetics in a Ghanaian population. J Diabetes Res 2018;14:11. https://doi.org/10.1155/2018/1381396.
- Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499-502. https://doi.org/10.1093/clinchem/18.6.499.
- Schettler G, Nussel E. Colorimetric determination of cholesterol. Arch Med Soz Med Prav Med 1975;10:55.
- 17. Pisa PT, Macclesfield LK, Kagura J, Ramsay M, Crowther NJ, Norris SA, et al. Different adiposity indices and their association with blood pressure and hypertension in middleaged urban black South African men and women: findings from the AWI-GEN South African Soweto Site. BMC Public Health 2018;18:524.
 - https://doi.org/10.1186/s12889-018-5440-4.

- 18. Sierra-Johnson J, Fisher RM, Romero-Corral A, Somers VK, Lopez-Jimenez F, Wallidius G, *et al.* Concentration of apolipoprotein B is comparable with the apolipoprotein B/apolipoprotein A-I ratio and better than routine clinical lipid measurements in predicting coronary heart disease mortality. Eur Heart J 2009;30:710-717. https://doi.org/10.1093/eurheartj/ehp026.
- 19. Rutkowski M, Grzegorczyk K. Modifications of spectrophotometric methods for antioxidative vitamins determination convenient in analytic practice. Acta Sci Pol Technol Aliment 2007;6:17-28.
- Rutkowski M, Grzegorczyk K, Paradowski MT. Colorimetric method of blood plasma total vitamin E determination – the own modification of Tsen method. Diagn Lab. 2005;41:375.
- 21. Rutkowski M, Grzegorczyk K, Gendek E, Kedziora J. Laboratory convenient modification of Bessey method for vitamin A determination in blood plasma. J Physiol Pharmacol 2006;57:221.
- Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991;196:143-151. https://doi.org/10.1016/0009-8981(91)90067-M.
- 23. Sinha KA. Colorimetric assay of catalase. Anal Biochem 1972;47:389-394. https://doi.org/10.1016/0003-2697(72)90132-7.
- Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988;34:497-500. https://doi.org/10.1093/clinchem/34.3.497.
- 25. Kazemi-Saleh D, Koosha P, Sadeghi M, Sarrafzadegan N, karbasi-Afshar R, Boshtam M, et al. Predictive role of adiponectin and high-sensitivity C-reactive protein for cardiovascular event prediction in an Iranian cohort study: The Isfahan Cohort Study. ARYA Atheroscler. 2016;12:132-137.
- 26. Afshari JT, Ghomian N, Shameli A, [(add 3 more authors, before et al.] et al. Determination of interleukin-6 and tumour necrosis factor-alpha concentrations in Iranian-Khorasanian patients with preeclampsia. BMC Pregnancy Childbirth.

- 2005;5:14. https://doi.org/10.1186/1471-2393-5-14.
- 27. Abbot RD, Wilson PW, Karvel WB, Castel WP. High density lipoprotein cholesterol, total cholesterol severing myocardial infarction. Atherosclerosis 1988;8:207-211.
- Alladi S, Shanmugasundaram KR. Induction of hypercholesterolemia by supplementing soy protein with acetate generating aminoacids. Nutr Rep Int 1989;40:893-899.
- 29. Lindsey ML, Pollow DP Jr, Uhlorn JA, Sylvester MA, Romero-Aleshire MJ, Uhrlaub JL, et al. Menopause and FOXP3+ Treg cell depletion eliminate female protection against T cell-mediated angiotensin II hypertension. Am J Physiol Heart Circ Physiol 2019;317:H415-H423.

 $\underline{https://doi.org/10.1152/ajpheart.00792.2018}$

- 30. Shin KA, Kim YJ. The usefulness of surrogate markers of body fat distribution for predicting metabolic syndrome in middleaged and older Korean populations. Diabetes Metab Syndr Obes 2019;12:2251–2259. https://doi.org/10.2147/DMSO.S217628.
- 31. Pisa PT, Micklesfield LK, Kagura J, Ramsay M, Crowther NJ, Norris SA. Different adiposity indices and their association with blood pressure and hypertension in middle-aged urban black South African men and women: findings from the AWI-GEN South African Soweto Site. BMC Public Health 2018;18:524.

https://doi.org/10.1186/s12889-018-5443-4.

32. Landi F, Calvani R, Picca A, Tosato M, Martone AM, Ortolani E, *et al.* Body Mass Index is strongly associated with hypertension: Results from the Longevity

- Check-up 7+ Study. Nutrients. 2018;10:1976. https://doi.org/10.3390/nu10121976.
- 33. Ginsberg HN, Zhang YL, Hernandez-Ono A. Metabolic syndrome: Focus on dyslipidemia. Obesity (Silver Spring). 2006;14:41S-49S. https://doi.org/10.1038/oby.2006.282.
- 34. Morita SY. Metabolism and modification of apolipoprotein B-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol Pharm Bull 2016;39:1-24. https://doi.org/10.1248/bpb.b15-00716.
- 35. Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative stress: A unifying paradigm in hypertension. Can J Cardiol 2020;36:659-670. https://doi.org/10.1016/j.cjca.2020.02.081.
- 36. Verma MK, Jaiswal A, Sharma P, Kumar P, Singh AN. Oxidative stress and biomarker of TNF-alpha, MDA and FRAP in hypertension.

 J Med Life 2019;12:253-259.

 https://doi.org/10.25122/jml-2019-0024.
- 37. Puszkarska A, Niklas A, Głuszek J, Lipski D, Niklas K. The concentration of tumour necrosis factor in the blood serum and in the urine and selected early organ damages in patients with primary systemic arterial hypertension. Medicine (Balt). 2019;98:e15773. https://doi.org/10.1097/MD.00000000000015 773.
- 38. Elsayed AM, Ibrahim WM, Grawesh SA, Elbadawy AM. Study of the relation between IL-6, insulin resistance, and blood pressure in essential hypertensive patients. Egypt J Hosp Med 2022;88:2549-2553. https://doi.org/10.21608/ejhm.2022.191588.
- 39. Xiao L, Harrison DG. Inflammation in hypertension. Can J Cardiol 2020;36:635-647. https://doi.org/10.1016/j.cjca.2020.01.013.

This open-access document is licensed for distribution under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0). This permits unrestricted, non-commercial use, reproduction and distribution in any medium, provided the original source is adequately cited and credited.