The Effect of Thymoquinone on the Hypothalamic-Pituitary-Gonadal- Gonadal Axis in Metronidazole-Induced Infertility in Adult Male Wistar Rats
DOI:
https://doi.org/10.30442/ahr.1103-07-294Abstract
Background: Hypothalamus centrally modulates fertility by controlling the reproductive hormonal axis.
Objectives: To investigate the effect of thymoquinone on the hypothalamic-pituitary-gonadal (HPG) axis in metronidazole-induced infertility in adult male Wistar rats.
Methods: Forty-nine male Wistar rats were divided into seven groups: group A (Control), Group B (Metronidazole only), Group C (Metronidazole + Thymoquinone low dose), Group D (Metronidazole + Thymoquinone high dose), Group E (Metronidazole + Recovery), Group F (Metronidazole + Thymoquinone low dose + Recovery), and Group G (Metronidazole + Thymoquinone high dose + Recovery). Experimental animals received 500 mg/kg of metronidazole, 200 mg/kg of thymoquinone, and 400 mg/kg of thymoquinone. Hormonal levels (GnRH, FSH, LH, testosterone) and sperm parameters were assessed after specific treatment durations using enzyme-linked immunosorbent assay (ELISA) and standard sperm analysis techniques.
Results: Metronidazole significantly decreased reproductive hormones: GnRH (71.11 ± 0.78 pg/mL), FSH (24.12 ± 0.60 mIU/mL), LH (4.87 ± 0.75 mIU/mL), and testosterone (2.13 ± 0.54 ng/mL) compared to controls (GnRH: 94.44 ± 0.19, FSH: 36.41 ± 1.90, LH: 14.93 ± 0.05, testosterone: 6.84 ± 0.13). Thymoquinone administration notably restored hormone levels: Group C (GnRH: 99.50 ± 0.29, FSH: 38.32 ± 0.90, LH: 35.97 ± 0.54, testosterone: 6.99 ± 0.53) and Group D (GnRH: 95.50 ± 0.17, FSH: 40.18 ± 0.63, LH: 31.43 ± 1.10, testosterone: 6.89 ± 0.42). Sperm parameters improved significantly in treated groups, with viability at 75.00 ± 0.04%, count at 205.00 ± 0.87 million/mL, motility at 77.00 ± 0.40%, and morphology at 80.00 ± 0.19%. Histological analysis revealed regeneration of testicular tissues.
Conclusion: Thymoquinone effectively ameliorates metronidazole-induced infertility by restoring the HPG axis function, enhancing hormone levels, and improving sperm parameters.
References
1. Chambers GM, Dyer S, Zegers-Hochschild F, de Mouzon J, Ishihara O, Banker M, et al. Human reproduction. Hum Reprod. 2021;36:2921–2934. https://doi.org/10.1093/humrep/deab198.
2. World Health Organisation (WHO). Infertility (Fact Sheet) [Internet]. 2023 [cited 2025 16 June]. Available from: https://www.who.int/news-room/fact-sheets/detail/infertility
3. Practice Committee of the American Society for Reproductive Medicine. ASRM publishes a new, more inclusive definition of infertility [Internet]. 2023 [cited 2025 16 June]. Available from: https://asrmcongress.org/asrm-publishes-a-new-more-inclusive-definition-of-infertility/
4. Illume Fertility. ASRM 2023 new infertility definition [Internet]. 2023 [cited 2025 16 June]. Available from: https://www.illumefertility.com/fertility-blog/asrm-2023-new-infertility-definition
5. Oguejiofor CB, Obi NC, Okafor OC, Eleje GU, Okafor CG. A 5-year retrospective cross-sectional study of the pattern of infertility in Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria. Gynecol Obstet Open Acc 2023;7:166. https://doi.org/10.29011/2577-2236.100166.
6. Mohammed-Durosinlorun A, Adze J, Bature S, Abubakar A, Mohammed C, Taingson M, et al. Use and pattern of previous care received by infertile Nigerian women. Fertil Res Pract 2019;5:14. https://doi.org/10.1186/s40738-019-0068-6.
7. Maternal Health Task Force (MHTF). The burden of infertility in Nigeria: raising visibility to promote equitable access to care [Internet]. 2024 [cited 2025 16 June]. Available from: https://www.mhtf.org/2017/04/06/the-burden-of-infertility-in-nigeria-raising-visibility-to-promote-equitable-access-to-care/#:~:text=,org%E3%80%91
8. Casteel CO, Singh G. Physiology, Gonadotropin-Releasing Hormone. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan– [cited 2025 16 June]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558992/
9. Oduwole OO, Huhtaniemi IT, Misrahi M. The roles of luteinising hormone, follicle-stimulating hormone and testosterone in spermatogenesis and folliculogenesis revisited. Int J Mol Sci 2021;22:12735. https://doi.org/10.3390/ijms222312735.
10. Grande G, Barrachina F, Soler-Ventura A, Jodar M, Mancini F, Marana R, et al. The role of testosterone in spermatogenesis: lessons from proteome profiling of human spermatozoa in testosterone deficiency. Front Endocrinol (Lausanne). 2022;13:852661. https://doi.org/10.3389/fendo.2022.852661.
11. Tabassum S, Rosli N, Arief Ichwan SJ, Mishra P. Thymoquinone and its pharmacological perspective: a review. Pharmacol Res - Mod Chin Med. 2021;1:100020. https://doi.org/10.1016/j.prmcm.2021.100020.
12. Bawa SH. Health benefits and uses of black seed and black seed oil [Internet]. 2020 [cited 2025 16 June]. Available from: https://nimedhealth.com.ng/2020/05/08/health-benefits-and-uses-of-black-seed-and-black-seed-oil/
13. Jakaria M, Azam S, Haque A, Jo SH, Uddin MS, Kim IS, et al. Molecular insight into the therapeutic potential of thymoquinone and its future perspectives. Biomed Pharmacother. 2018;107:1383-1394. https://doi.org/10.1016/j.biopha.2018.08.138.
14. Hassan MH, Awadalla EA, Ali RA, Fouad SS, Abdel-Kahaar E. Thiamine deficiency and oxidative stress induced by prolonged metronidazole therapy can explain its side effects of neurotoxicity and infertility in experimental animals: effect of grapefruit co-therapy. Hum Exp Toxicol 2020 39(6):834-847. https://doi.org/10.1177/0960327119867755.
15. Oyedeji KO, Oshatimi A, Abidoye D, Adeleke KO. Effect of metronidazole on reproductive parameters in male Wistar rats. Int J Pharm Sci Rev Res 2015;35:186-190.
16. Bone W, Jones NG, Kamp G, Yeung CH, Cooper TG. Effect of ornidazole on fertility of male rats: inhibition of a glycolysis-related motility pattern and zona binding required for fertilisation in vitro. J Reprod Fertil 2000;118:127-135. https://doi.org/10.1530/jrf.0.1180127.
17. Osonuga IO, Edema VB, Okebule BO, Ogunlade AO, Olukade BA, Osonuga O. Aqueous seed extract of Nigella sativa ameliorated metronidazole-induced testicular damage via up-regulations of the antioxidant system. Ann Health Res 2024;10:285-294.
18. El-Nahas AF, El-Ashmawy IM. Reproductive and cytogenetic toxicity of metronidazole in male mice. Basic Clin Pharmacol Toxicol 2004;94:226–231. https://doi.org/10.1111/j.1742-7843.2004.pto940505.x.
19. Jo EJ, Bae E, Yoon JH, Kim JY, Han JS, et al. Comparison of murine retroorbital plexus and facial vein blood collection to mitigate animal ethics issues. Lab Anim Res 2021;37:12. https://doi.org/10.1186/s42826-021-00090-4.
20. Osonuga OA, Osonuga IO, Osonuga AA. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats. Asian Pac J Trop Biomed 2014;4:S521-S524.
21. Jalili C, Salahshoor MR, Naderi T. The effect of hydroalcoholic extract of P. crispum on sperm parameters, testis tissue and serum nitric oxide levels in mice. Adv Biomed Res 2015;4:40. https://doi.org/10.4103/2277-9175.151249.
22. Carey JC, Klebanoff MA. Is a change in the vaginal flora associated with an increased risk of preterm birth? Am J Obstet Gynecol 2005;192:1341-1347. https://doi.org/10.1016/j.ajog.2004.12.069.
23. Foran D, Chen R, Jayasena CN, Minhas S, Tharakan T. The use of hormone stimulation in male infertility. Curr Opin Pharmacol 2023;68:102333. https://doi.org/10.1016/j.coph.2022.102333.
24. Leslie SW, Soon-Sutton TL, Khan MAB. Male infertility. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 16 June]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562258
25. Marques P, De Sousa Lages A, Skorupskaite K, Rozario KS, Anderson RA, George JT. Physiology of GnRH and gonadotrophin secretion. In: Feingold KR, Ahmed SF, Anawalt B, et al. (editors). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000- [cited 2025 16 June]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279070
26. Onopiuk B, Onopiuk P, Dąbrowska Z, Dąbrowska E, Pietruska M, Car H. Effect of metronidazole on the oxidoreductive processes in the submandibular and parotid glands in experimental research. Oxid Med Cell Longev 2018;2018:7083486. https://doi.org/10.1155/2018/7083486.
27. DrugBank. DB00916 [Internet]. 2024 [cited 2025 16 June]. Available from: https://go.drugbank.com/drugs/DB00916
28. Kumar P. Pharmacology of specific drug groups. In: Dowd FJ, Johnson BS, Mariott AJ, editors. Pharmacology and Therapeutics for Dentistry. 7th ed. Elsevier; 2017. p. 457-87. https://doi.org/10.1016/B978-0-323-39307-2.00033-3.
29. Salahshoor MR, Khazaei M, Jalili C, Keivan M. Crocin improves damage induced by nicotine on a number of reproductive parameters in male mice. Int J Fertil Steril 2016;10:71-78. https://doi.org/10.22074/ijfs.2016.4771.
30. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 2005;338:668-676. https://doi.org/10.1016/j.bbrc.2005.08.072.
31. Gholamnezhad Z, Havakhah S, Boskabady MH. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: a review. J Ethnopharmacol. 2016;190:372-386. https://doi.org/10.1016/j.jep.2016.06.061.
32. Griswold MD. Cellular and molecular basis for the action of retinoic acid in spermatogenesis. J Mol Endocrinol 2022;69:T51-T57. https://doi.org/10.1530/JME-22-0067.
33. Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol (Lausanne) 2018;9:763. https://doi.org/10.3389/fendo.2018.00763.
34. Isaev NK, Genrikhs EE, Stelmashook EV. Antioxidant Thymoquinone and Its Potential in the Treatment of Neurological Diseases. Antioxidants (Basel) 2023;12:433. https://doi.org/10.3390/antiox12020433.
35. Haq IU, Rehman A, Saleem U, Mahmood S, Akhtar MF, Saleem A, et al. Thymoquinone alleviates metronidazole-induced testicular and epididymal toxicity in rats. Environ Sci Pollut Res Int 2021;28:16326-16338. https://doi.org/10.1007/s11356-020-11736-4.
36. Khan A, Aldebasi YH, Alsuhaibani SA, Khan MA. Thymoquinone augments apoptosis and regulates Bcl-2 and Bax gene expression in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity in rat spermatozoa. Environ Sci Pollut Res Int. 2020;27:15326-15336. https://doi.org/10.1007/s11356-020-11736-4.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Annals of Health Research (The Journal of the Medical and Dental Consultants Association of Nigeria, OOUTH, Sagamu, Nigeria)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The articles and other materials published in the Annals of Health Research are protected by the Nigerian Copyright laws. The journal owns the copyright over every article, scientific and intellectual materials published in it. However, the journal grants all authors, users and researchers access to the materials published in the journal with the permission to copy, use and distribute the materials contained therein only for academic, scientific and non-commercial purposes.