Evaluation of Some Thrombogenic Parameters Among Type 2 Diabetes Mellitus Patients in Sagamu, Nigeria

Authors

DOI:

https://doi.org/10.30442/ahr.1102-07-283

Keywords:

α1-Antitrypsin, Adiponectin, Inflammatory markers, Thrombosis, Type 2 Diabetes mellitus

Abstract

Background: Metabolic dysfunction in type 2 diabetes mellitus (T2DM) is related to defective glucose metabolism, deficient synthesis of fatty acids and triglycerides, and compensatory switch to the use of protein and fat in search of alternative metabolic fuel. Complications arising from this metabolic disorder include angiopathy, among others.

Objective: To examine the pattern of some thrombogenic parameters in Type 2 Diabetes mellitus.

Method: A comparative, cross-sectional study of non-obese, obese Type 2 diabetic patients as the test population and a subset of healthy, non-diabetic individuals as controls. Anthropometric parameters were measured, and body mass index (BMI), waist-to-hip ratio (WHR), and percentage body fat (%BF) were computed for tests and controls. Fasting serum triglycerides, total cholesterol, high-density lipoprotein (HDL), high sensitivity C-reactive protein (hs-CRP), and interleukine-6 (IL-6) were measured, and low-density lipoprotein (LDL) was calculated for all participants.

Result: A total of 150 participants, with an age range of 41-60 years. Significantly higher values of (p<0.001) weight, BMI, WC, HC, %BF, WHR, serum glucose, HbA1c, leptin, triglycerides, cholesterol, LDL, hs-CRP and IL-6 levels were observed. A significantly lesser value of serum A1AT, adiponectin, and HDL levels amongst the people with diabetes when compared to the control subjects (p<0.001), more in obese individuals with diabetes (p<0.001).

Conclusion: It is evident from this study that T2DM is associated with dyslipidaemia and increased serum levels of inflammatory and thrombosis markers, suggesting that risk factors of thrombotic events exist in Type 2 Diabetes mellitus patients.

References

1. World Health Organization. Classification of diabetes mellitus 2019.

2. Jiang S, Young JL, Wang K, Qian Y, Cai L. Diabetic induced alterations in hepatic glucose and lipid metabolism: The role of Type 1 and Type 2 diabetes mellitus (Review). Mol Med Rep 2020;22:603-611. https://doi.org/10.3892/mmr.2020.11175.

3. Khoramipour K, Chamari K, Hekmatikar AA, Ziyaiyan A, Taherkhani S, Elguindy NM, et al. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021;13:1180. https://doi.org/10.3390/nu13041180.

4. Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol 2023;14:1161521. https://doi.org/10.3389/fendo.2023.1161521.

5. Chait A, Den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020;7:22. https://doi.org/10.3389/fcvm.2020.00022

6. Tagalakis V, Patenaude V, Kahn SR, Suissa S. Incidence of and mortality from venous thromboembolism in a real-world population: The Q-VTE study cohort [J]. Am J Med 2013;126:813–832. https://doi.org/10.1016/j.amjmed.2013.02.024

7. ISTH Steering Committee for World Thrombosis Day. Thrombosis: A major contributor to the global disease burden. J Thromb Haemost 2014;12:1580–1590. https://doi.org/10.1111/jth.12698

8. Heit JA. Epidemiology of venous thromboembolism. Nat Rev Cardiol 2015;12:464–474. https://doi.org/10.1038/nrcardio.2015.83

9. Choudhury AB, Pawar SM, Dey Sarkar P, Gopi K. Hypoadiponectinemia is associated with increased insulin resistance, dyslipidemia and presence of Type 2 diabetes in non-obese central Indian population. Int J Res Med Sci 2018;7:106–113. https://doi.org/10.18203/2320-6012.ijrms20185131

10. Rahmani J, Roudsari AH, Bawadi H, Thompson J, Fard RK, Clark C, et al. Relationship between body mass index, risk of venous thromboembolism and pulmonary embolism: A systematic review and dose-response meta-analysis of cohort studies among four million participants. Thromb Res 2020;192:64-72. https://doi.org/10.1016/j.thromres.2020.05.014

11. Cushman M, O’Meara ES, Heckbert SR, Zakai NA, Rosamond W, Folsom AR. Body size measures, hemostatic and inflammatory markers and risk of venous thrombosis: The Longitudinal Investigation of Thromboembolism Etiology. Thromb Res 2016;144:127–132. https://doi.org/10.1016/j.thromres.2016.06.012

12. Klarin D, Emdin CA, Natarajan P, Conrad MF, Kathiresan S. Invent Consortium. Genetic analysis of venous thromboembolism in UK biobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor. Circ Cardiovasc Genet 2017;10:e001643. https://doi.org/10.1161/CIRCGENETICS.116.001643

13. Xiao W, Li J, Feng T and Jin L. Circulating adipokine concentrations and the risk of venous thromboembolism: A Mendelian randomization and mediation analysis. Front Genet 2023;14:1113111. https://doi.org/10.3389/fgene.2023.1113111

14. Basil N, Ekström M, Piitulainen E, Lindberg A, Rönmark E, Jehpsson L, Tanash H. Severe alpha-1-antitrypsin deficiency increases the risk of venous thromboembolism. J Thromb Haemost 2021;19:1519-1525. https://doi.org/10.1111/jth.15216

15. Roy PK, Islam J, Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt Heart J 2023;75:24. https://doi.org/10.1186/s43145-023-00132-7

16. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without the use of the preparative ultracentrifuge. Clin Chem 1972;18:499-502. https://doi.org/10.1093/clinchem/18.6.499

17. Schettler G, Nussel E. Colorimetric determination of cholesterol. Arh Med Soz Med Prav Med 1975;10:55.

18. Nagele U, Hagele EO, Sauer G. Reagent for enzymatic determination of serum total triglycerides with improved lypholytic efficiency, J. Clin. Chem. Clin. Biochem 1984;22:165-174.

19. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988;34:497-500. https://doi.org/10.1093/clinchem/34.3.497

20. Kazemi-Saleh D, Koosha P, Sadeghi M, Sarrafzadegan N, Karbasi-Afshar R, Boshtam M, et al. Predictive role of adiponectin and high-sensitivity C-reactive protein for prediction of cardiovascular event in an Iranian cohort Study: The Isfahan Cohort Study. ARYA Atheroscler 2016;12:132-137. https://doi.org/10.18869/arya.12497

21. Kadish AH, Little RI, Sternberg JC. A new and rapid method for the determination of glucose by measurement of rate of oxygen consumption. Clin Chem 1969; 14: 116-118. https://doi.org/10.1093/clinchem/14.1.116

22. Lahousen T, Roller RE, Lipp RW, Schnedl WJ. Determination of glycated hemoglobins (Hb A1c). Wien Klin Wochensch 2002;114:301-305. https://doi.org/10.1007/s00508-002-0806-4

23. Costa X, Jardi R, Rodriguez F, Miravitlles M, Cotrina M, Gonzalez C, et al. Simple method for a1-antitrypsin deficiency screening by use of dried blood spot specimens. Eur Resp J 2000;15:1111-1115. https://doi.org/10.1183/09031936.00.15061111

24. Richard FD, Carlos B. Glycosylated hemoglobin assay and oral glucose tolerance test compared for detection of Diabetes Mellitus. Clin Chem 1997;25:764-768. https://doi.org/10.1093/clinchem/25.5.764

25. Ma Z, Cingerich RI, Santlago JV, Klein S, Smith CH, Landt M. Analysis of human plasma leptin by radioimmunoassay. Clin Chem 1996;42:942-946. https://doi.org/10.1093/clinchem/42.5.942

26. Canadian Diabetes Association. Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada; Optometric Clinical Practice Guideline, Care of the Patient with Diabetes Mellitus, Reference Guide for Clinicians. American Optometric Association, USA 2013; p. 15.

27. Christian O, Yaa O, Emmanuel A, Enoch OA, Emmanuel T, Evans AA, et al. Association of Waist Circumference and Waist-to-Height Ratio with Cardiometabolic Risk Factors among Type II Diabetics in a Ghanaian Population. J Diabetes Res 2018;14:11. https://doi.org/10.1155/2018/1838162

28. American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes, Diabetes Care 2021;44:S15–S33. https://doi.org/10.2337/dc21-S001

29. Geraghty P, Eden E, Pillai M, Campos M, Mcelvaney NG, Foronjy RF. Alpha1-antitrypsin activates protein phosphatase 2A to counter lung inflammatory responses. Am J. Respir Crit Care Med 2014;190: 1229–1242. https://doi.org/10.1164/rccm.201405-0872OC

30. Park SS, Rodriguez Ortega R, Agudelo CW, Perez Perez J, Perez Gandara B, Garcia-Arcos I, et al. Therapeutic Potential of Alpha-1 Anti-trypsin in Type 1 and Type 2 Diabetes Mellitus. Medicina (Kaunas) 2021;57:397. https://doi.org/10.3390/medicina57040397

31. Yaghmaei M, Hashemi M, Shikhzadeh A, Mokhtar M, Niazi A, Ghavami S. Serum trypsin inhibitory capacity in normal pregnancy and gestational diabetes mellitus. Diabetes Res Clin Pract 2009; 84:201–204 https://doi.org/10.1016/j.diabres.2009.03.003

32. Rachmiel M, Strauss P, Dror N, Benzaquen H, Horesh O, Tov N, et al. Alpha-1 anti-trypsin therapy is safe and well tolerated in children and adolescents with recent onset Type 1 diabetes mellitus. Pediatr Diabetes 2016;17:351-359. https://doi.org/10.1111/pedi.12283

33. Kim M, Cai Q, Oh Y. Therapeutic potential of alpha-1 anti-trypsin in human disease. Ann Pediatr Endocrinol Metab 2018;23:131-135. https://doi.org/10.6065/apem.2018.23.3.131

34. Tilg H, Moschen AR. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006;6:772–783. https://doi.org/10.1038/nri1937

35. Nielsen MB, Çolak Y, Benn M, Nordestgaard BG. Low Plasma Adiponectin in Risk of Type 2 Diabetes: Observational Analysis and One- and Two-Sample Mendelian Randomization Analyses in 756,219 Individuals. Diabetes 2021;70:2694–2705. https://doi.org/10.2337/db21-0131

36. Yanai H, Yoshida H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int J Mol Sci 2019;20:1190. https://doi.org/10.3390/ijms20051190

37. Al-Sheikh MH. The determinants of leptin levels in diabetic and non-diabetic Saudi males. Int J Endocrinol 2017;3506871–3506878. https://doi.org/10.1155/2017/3506871

38. Najam Ss, Awan FR, Islam M, Khurshid M, Khan AR., Siddique T, et al. Leptin correlation with obesity, diabetes and gender in a population from Faisalabad Pakistan. Arch Med 2016;8:11–16. https://doi.org/10.21767/1989-5216.1000169

39. Adams Y, Ofori EK, Asare-Anane H, Amanquah SD, Ababio GK, Abendau E, et al. Adipocytokines in obese Ghanaian subjects with or without Type 2 diabetes. BMC Res Notes 2018;11:109–115. https://doi.org/10.1186/s13104-018-3149-4

40. Liu W, Zhou X, Li Y, Zhang S, Cai X, Zhang R, et al. Serum leptin, resistin and adiponectin levels in obese and non-obese patients with newly diagnosed Type 2 diabetes mellitus: a population-based study. Medicine 2020;99:6–13. https://doi.org/10.1097/md.0000000000019052

41. Abdissa D, Hirpa D. Dyslipidemia and its associated factors among adult diabetes outpatients in West Shewa zone public hospitals, Ethiopia. BMC Cardiovasc Disord 2022;22:39. https://doi.org/10.1186/s12872-022-02489-w

Downloads

Published

2025-06-30

Issue

Section

Original Research

Most read articles by the same author(s)